El diseño de biotransportadores representa un enfoque eficaz para la preservación de elementos bioactivos y la liberación controlada en ambientes específicos. Este estudio presenta una estructura novedosa de biotransportador compuesta por dos biopolímeros bacterianos biodegradables, no tóxicos, pero inherentemente incompatibles: la celulosa bacteriana (CB), un polímero poroso e hidrofílico conocido por su alta capacidad de retención de agua (hasta 400 veces su peso seco) y resistencia a la tracción, y el polihidroxibutirato (PHB), un polímero hidrofóbico caracterizado por sus excelentes propiedades de barrera y estabilidad frente a la radiación ultravioleta. Mediante la técnica de electrospray coaxial, se produjeron partículas huecas de doble cáscara (DSHP, por sus siglas en inglés) con una arquitectura esférica y un diámetro promedio de 360 µm. Estas partículas constan de una cáscara externa de PHB que actúa como barrera protectora y una capa interna a base de CB diseñada para favorecer la viabilidad microbiana. Para asegurar la integridad estructural y mejorar la compatibilidad entre los polímeros, se injertaron cadenas de PHB sobre la CB, alcanzando un grado de modificación del 31%, antes del proceso de electrospray. Las DSHP resultantes demostraron una cavidad interna capaz de alojar cargas bacterianas de hasta 10⁸ UFC/mL, manteniendo la viabilidad celular durante al menos 2 días y permitiendo un perfil de liberación controlada. Además, las condiciones optimizadas del electrospray garantizaron una alta reproducibilidad y estabilidad. Esta configuración prometedora de partículas ofrece un potencial de aplicación en diversos campos, desde la biomedicina hasta el ámbito ambiental.
3729048
{3729048:U37QFSBP}
1
nature
50
default
1
1
title
2274
http://www.biomateriales.ictp.csic.es/wp-content/plugins/zotpress/
%7B%22status%22%3A%22success%22%2C%22updateneeded%22%3Afalse%2C%22instance%22%3Afalse%2C%22meta%22%3A%7B%22request_last%22%3A0%2C%22request_next%22%3A0%2C%22used_cache%22%3Atrue%7D%2C%22data%22%3A%5B%7B%22key%22%3A%22U37QFSBP%22%2C%22library%22%3A%7B%22id%22%3A3729048%7D%2C%22meta%22%3A%7B%22creatorSummary%22%3A%22Rivero-Buceta%20et%20al.%22%2C%22parsedDate%22%3A%222025-04-04%22%2C%22numChildren%22%3A1%7D%2C%22bib%22%3A%22%3Cdiv%20class%3D%5C%22csl-bib-body%5C%22%20style%3D%5C%22line-height%3A%202%3B%20%5C%22%3E%5Cn%20%3Cdiv%20class%3D%5C%22csl-entry%5C%22%20style%3D%5C%22clear%3A%20left%3B%20%5C%22%3E%5Cn%20%3Cdiv%20class%3D%5C%22csl-left-margin%5C%22%20style%3D%5C%22float%3A%20left%3B%20padding-right%3A%200.5em%3B%20text-align%3A%20right%3B%20width%3A%201em%3B%5C%22%3E1.%3C%5C%2Fdiv%3E%3Cdiv%20class%3D%5C%22csl-right-inline%5C%22%20style%3D%5C%22margin%3A%200%20.4em%200%201.5em%3B%5C%22%3ERivero-Buceta%2C%20V.%20%3Ci%3Eet%20al.%3C%5C%2Fi%3E%20%3Ca%20class%3D%27zp-ItemURL%27%20target%3D%27_blank%27%20href%3D%27https%3A%5C%2F%5C%2Fwww.sciencedirect.com%5C%2Fscience%5C%2Farticle%5C%2Fpii%5C%2FS266689392500129X%27%3EDesign%20and%20Synthesis%20of%20Hollow%20Particles%20Based%20on%20Bacterial%20Cellulose%20and%20Polyhydroxybutyrate%20for%20Microbial%20Entrapping%20Using%20Coaxial%20Electrospray%20Technology%3C%5C%2Fa%3E.%20%3Ci%3ECarbohydrate%20Polymer%20Technologies%20and%20Applications%3C%5C%2Fi%3E%20100791%20%282025%29%20%3Ca%20class%3D%27zp-DOIURL%27%20target%3D%27_blank%27%20href%3D%27http%3A%5C%2F%5C%2Fdoi.org%5C%2F10.1016%5C%2Fj.carpta.2025.100791%27%3Ehttp%3A%5C%2F%5C%2Fdoi.org%5C%2F10.1016%5C%2Fj.carpta.2025.100791%3C%5C%2Fa%3E.%20%3Ca%20title%3D%27Cite%20in%20RIS%20Format%27%20class%3D%27zp-CiteRIS%27%20href%3D%27http%3A%5C%2F%5C%2Fwww.biomateriales.ictp.csic.es%5C%2Fwp-content%5C%2Fplugins%5C%2Fzotpress%5C%2Flib%5C%2Frequest%5C%2Frequest.cite.php%3Fapi_user_id%3D3729048%26amp%3Bitem_key%3DU37QFSBP%27%3ECite%3C%5C%2Fa%3E%20%3C%5C%2Fdiv%3E%5Cn%20%3C%5C%2Fdiv%3E%5Cn%3C%5C%2Fdiv%3E%22%2C%22data%22%3A%7B%22itemType%22%3A%22journalArticle%22%2C%22title%22%3A%22Design%20and%20Synthesis%20of%20Hollow%20Particles%20Based%20on%20Bacterial%20Cellulose%20and%20Polyhydroxybutyrate%20for%20Microbial%20Entrapping%20Using%20Coaxial%20Electrospray%20Technology%22%2C%22creators%22%3A%5B%7B%22creatorType%22%3A%22author%22%2C%22firstName%22%3A%22Virginia%22%2C%22lastName%22%3A%22Rivero-Buceta%22%7D%2C%7B%22creatorType%22%3A%22author%22%2C%22firstName%22%3A%22Luis%22%2C%22lastName%22%3A%22Garc%5Cu00eda-Fern%5Cu00e1ndez%22%7D%2C%7B%22creatorType%22%3A%22author%22%2C%22firstName%22%3A%22Cristina%22%2C%22lastName%22%3A%22Campano%22%7D%2C%7B%22creatorType%22%3A%22author%22%2C%22firstName%22%3A%22Natalia%22%2C%22lastName%22%3A%22Hern%5Cu00e1ndez-Herreros%22%7D%2C%7B%22creatorType%22%3A%22author%22%2C%22firstName%22%3A%22Maria%20Rosa%22%2C%22lastName%22%3A%22Aguilar%22%7D%2C%7B%22creatorType%22%3A%22author%22%2C%22firstName%22%3A%22M.%20Auxiliadora%22%2C%22lastName%22%3A%22Prieto%22%7D%5D%2C%22abstractNote%22%3A%22The%20design%20of%20biocarriers%20presents%20an%20effective%20approach%20for%20preserving%20bioactive%20elements%20and%20enabling%20controlled%20release%20in%20specific%20environments.%20This%20study%20introduces%20a%20novel%20biocarrier%20structure%20composed%20of%20two%20biodegradable%2C%20non-toxic%2C%20yet%20inherently%20incompatible%20bacterial%20biopolymers%3A%20bacterial%20cellulose%20%28BC%29%2C%20a%20hydrophilic%20porous%20polymer%20known%20for%20its%20high%20water-holding%20capacity%20%28up%20to%20400%20times%20its%20dry%20weight%29%20and%20tensile%20strength%2C%20and%20polyhydroxybutyrate%20%28PHB%29%2C%20a%20hydrophobic%20polymer%20characterized%20by%20its%20excellent%20barrier%20properties%20and%20UV%20stability.%20Using%20a%20coaxial%20electrospray%20technique%2C%20double-shelled%20hollow%20particles%20%28DSHP%29%20with%20a%20spherical%20architecture%20and%20an%20average%20diameter%20of%20360%20%5Cu00b5m%20were%20produced.%20These%20particles%20consist%20of%20an%20outer%20PHB%20shell%20that%20serves%20as%20a%20protective%20barrier%2C%20and%20an%20inner%20BC-based%20layer%20designed%20to%20support%20microbial%20viability.%20To%20ensure%20structural%20integrity%20and%20enhance%20compatibility%20between%20the%20polymers%2C%20PHB%20chains%20were%20grafted%20onto%20BC%2C%20achieving%20a%20modification%20degree%20of%2031%25%2C%20prior%20to%20electrospraying.%20The%20resulting%20DSHP%20demonstrated%20an%20internal%20cavity%20capable%20of%20housing%20bacterial%20loads%20up%20to%20108%20CFU%5C%2FmL%2C%20maintaining%20cell%20viability%20for%20at%20least%202%20days%20and%20enabling%20controlled%20release%20profile.%20Additionally%2C%20the%20optimized%20electrospray%20conditions%20ensured%20high%20reproducibility%20and%20stability.%20This%20promising%20particle%20configuration%20offers%20potential%20applicability%20across%20various%20fields%2C%20from%20biomedicine%20to%20environmental%20applications.%22%2C%22date%22%3A%222025-04-04%22%2C%22language%22%3A%22%22%2C%22DOI%22%3A%2210.1016%5C%2Fj.carpta.2025.100791%22%2C%22ISSN%22%3A%222666-8939%22%2C%22url%22%3A%22https%3A%5C%2F%5C%2Fwww.sciencedirect.com%5C%2Fscience%5C%2Farticle%5C%2Fpii%5C%2FS266689392500129X%22%2C%22collections%22%3A%5B%5D%2C%22dateModified%22%3A%222025-04-07T08%3A31%3A37Z%22%7D%7D%5D%7D